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Abstract—The present paper is concerned with uniform property, laminar boundary-layer flows when
no mass passes through the interface. Similar solutions to the velocity equation for this case were
found in the literature; these were given to high accuracy and covered the range of decelerated and
moderately accelerated main-streams, The solutions are first expressed in the form adopted in the first
papers of the present series, and are then used in evaluating the wall gradient for the b-boundary layer
(i.e. the Nusselt number in similar co-ordinates). The series expansions for obtaining this wall gradient
when the Prandtl/Schmidt number ¢ is large, already given in Paper 3(a), have been recalculated to
improve their accuracy. A table of values of the wall gradient covers the range of ¢ from 0-0001 to
1000; it can readily be calculated in both directions outside this range. Some functions obtained from
the wall gradient are plotted and discussed.

NOTATION E,, correction factor defined by equation

Where the quantities in the following list have (34) tabulated in Table 1;

dimensions these are given in brackets, otherwise ~ f,  dimensionless stream function; defined
they are dimensionless, by equation (11);

a,,  coefficients occurring in equation (49) Jo fo 1} values of f and its derivatives at the
and defined in equations (51) to (59); f§ § interface;

A,, coefficients occurring in equation (45) F,, function, defined in equation (33),
and defined in equation (47); giving rate of growth of the momentum

b, conserved fluid property in dimension- thickness 8,;
less form defined in equation (19); H,,, ratio of displacement thickness §; to the
discussed in Paper 3; momentum thickness 8,;

by, gradient of b in the fluid adjacent to the H,,, ratio of momentum thickness 8, to shear
interface; see equation (24); thickness 8,;

B, value of b in the main-stream; it is the K, thermal diffusivity of the fluid for heat
driving force for mass transfer; see transfer or the diffusion coefficient of a
equation (23); mass component in the fluid mixture

C, constant occurring in equation (5); for mass transfer (ft%/h);

d, dimensionless distance occurring in m, number occurring in equation (48)
equation (41); it is the smallest con- specifying terms in the expanded form
venient value of the similar co-ordinate of equation (45);

7 at which the flow can be regarded as n,  constant occurring in equation (5);
inviscid ; Nu, Nusselt number in terms of the distance

D, abbreviation for 8/( f;)¥® which occurs x;
in the expressions for the coefficients a,; P, any fluid property, expressed in suitable

E, integral defined by equation (45) evalu- dimensionless form, which is conserved
ated numerically from equation (49); during transfer processes;

35
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Pg, value of P in the main-stream:
Ps, value of P in the fluid at the interface;
Pr, value of P in the transferred substance

(see Spalding [7]);

g, number specifying terms in equation
(49);

v, number specifying terms in equation

(47);

local Reynolds number (=ugx/v);

u,  velocity component parallel to the inter-

face (ft/h);

value of u in the main-stream (ft/h);

v,  velocity component perpendicular to the
interface (ft/h);

x, distance parallel to the interface
measured from the start of the boundary
layer (ft);

¥y,  distance perpendicular to the interface
measured from the interface towards the
main-stream (ft).

Greek symbols

B, parameter occurring in the similar form
of the velocity equation and defined in
equation (12);

v, fluid property called the exchange
coefficient and defined as Kp, (Ib/ft h);

8,  any boundary-layer thickness associated
with the velocity boundary layer (ft);

8,, displacement boundary-layer thickness;
= [o(1 — ufuc) dy, (ft);

87, displacement thickness in terms of
similar co-ordinates; defined in equa-
tions (27) and (37) for different similar
co-ordinates;

8;, momentum boundary-layer thickness;
= [* (ufuc) (1 — ufuc) dy, (ft);
momentum thickness in similar co-
ordinates; defined in equations (28) and
(38) for different similar co-ordinates;
84, shear boundary-layer thickness;

= uc/(0u/0y)y=o, (ft);

8*

2%

8;, shear thickness in similar co-ordinates;
an alternative expression for 1/ f, but
not used in the present paper;

4, any boundary-layer thickness associated
with the b-boundary layer, (ft);

d,, convection thickness;

= (3 (u/uc) (1 — b/B) dy, (ft);

convection thickness in similar co-

ordinates; defined by equation (68);

4,  conduction thickness; == B/(8b/0V),=q,
(fv);

A:, conduction thickness in similar co-
ordinates, defined by equation (67);

g, dimensionless stream function; defined
by equation (7);

lo» value of { in the fluid at the interface
where ¢ = 0;

n,  dimensionless distance
defined by equation (10);

i,  dynamic viscosity of fluid (1b/ft h);

v,  kinematic viscosity of fluid; =pu/p,
(ft*/h);

¢, dimensionless  distance
defined by equation (6);

p,  density of fluid (Ib/ft%);

Prandtl or Schmidt number of fluid;

= V/K;

@, integration variable used in Section 4.2;
defined in equation (44);

b,  stream function; defined by equation

3), (f*/h).

*
47,

co-ordinate;

co-ordinate;

Subscripts
G, denotes fluid state in the main-stream;
0, denotes fluid state at the interface;
g,  denotes terms in equation (49);
r,  denotes terms in equation (45) like 4, in
equation (47).

1. EARLIER PAPERS IN THE SERIES

1.1. Introduction
THE present series of papers is concerned with
methods of calculating mass transfer rates for
laminar boundary-layer flows when the fluid
properties may be considered uniform through-
out and internal dissipation of energy is negli-
gible. Within these limitations, however, three
important parameters associated with the
problem are allowed to take values over as wide
a range as it is practicable to cover. These are
(a) the Prandtl/Schmidt number of the fluid,
(b) the pressure gradient in the main-stream and
(c) the mass transfer rate. Both inward and out-
ward mass transfer through the interface are
considered.

It has been shown in earlier papers that the
problem of predicting mass transfer rates reduces
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to the simultaneous solution of two partial
differential equations, (1) the velocity equation,
which is concerned with the distribution in the
boundary layer of purely mechanical quantities
like velocity, momentum and shear stresses, and
(2) the b-equation, which governs the distribution
of other conserved fluid properties.

For a general type of problem, such as one
where fluid flows over a surface on which the
distribution of both pressure gradient and mass
transfer rate are arbitrary, the latter quantity
usually being unknown, solution of the equations
presents a formidable task and is rarely
attempted.

On the other hand the equations possess
“similar” solutions in which the three parameters
listed above may take any values, or combination
of values, likely to be encountered in any
practical problem. These “‘similar” solutions
form the basis of methods of boundary-layer
calculation which may be used for any boundary-
layer flow. Although these general methods are
approximate by nature they would be expected
to give the order of accuracy required for most
engineering and design purposes.

The first part of the problem to be solved
therefore is to obtain continuous families of
“similar” solutions at convenient, if possible
regular, intervals in the three varying parameters.
The second part is to devise suitable general
methods of boundary-layer calculation and
draw up appropriate tables and charts from the
“similar’” solutions for use with these methods.

1.2. Summary of earlier papers

The first two papers in the series, Spalding [1],
Spalding and Evans [2], were concerned exclu-
sively with the velocity equation, the first
describing the relevant general method applic-
able to any boundary-layer flow with mass
transfer, the second supplying the appropriate
tables and charts for use with this method and
derived from exact similar solutions.

Paper 3, Spalding and Evans [3], considered
the b-equation. Only a few exact similar solu-
tions to this equation could be found in the
literature and these were tabulated. Other tables
were also supplied from which approximate
solutions could be obtained for ranges in the
three parameters considered.

Paper 3a, Evans [4], which was also concerned
with the b-equation, considered the case when
B, the driving force for mass transfer, was zero
and the Prandtl/Schmidt number o was greater
than 0-5. Series in inverse powers of ¢ were
given from which the gradient at the interface
for the b-boundary layer could be evaluated for
any high value of ¢ and for a wide range of
main-stream pressure gradient. Even for ¢ near
unity the series gave good accuracy.

In Paper 6, Evans [5], methods were given for
evaluating this gradient accurately if similar
solutions to the velocity equation are known. A
table of values of this gradient was also given for
the case of zero main-stream pressure gradient
covering wide ranges in the mass transfer rate
and Prandtl/Schmidt number.

1.3. How the present paper is related to preceding
papers

The present paper, like Paper 3a, Evans [4], is
concerned with the case when the driving force
for mass transfer is zero. The inclusion of the
case of zero mass transfer in a series mainly
devoted to methods of predicting mass transfer
rates has already been justified in the earlier paper.
Since writing that paper, however, developments
have occurred which made it possible to extend
the range in the parameters for which results
could be obtained as well as to improve the
accuracy.

Firstly, similar solutions to the velocity
equation were found in the literature giving
considerably higher accuracy than was available
hitherto. These were particularly useful for
decelerated flows, when separation conditions
are approached, since in that region they were
given at small intervals in the relevant parameter.
Unfortunately, however, as they were largely
confined to wedge-type flows, they did not
include cases of very highly accelerated main-
streams.

Secondly, a method was evolved for evaluating
the wall gradient to the b-boundary layer
accurately from solutions to the velocity equa-
tion. This method, which was described in
Paper 6, could be used for any values of the three
parameters mentioned above. The calculations
were relatively short even for low values of the
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Prandtl/Schmidt number; these cases had previ-
ously involved rather long calculations.

Thirdly, a computer became available for
carrying out the necessary calculations. Apart
from increasing the speed with which wall
gradients could be evaluated, this allowed the
use of more accurate formulae for numerical
integration.

In many respects, therefore, the present paper
supersedes Paper 3a, although most of the
discussion contained in that paper will not be
repeated here. On the other hand, since more
accurate solutions to the velocity equation are
now available, the series expansions used in that
paper for evaluating the wall gradient for high
values of the Prandtl/Schmidt number have been
recalculated. In order to present these, therefore,
a certain amount of repetition will be necessary.

2. THE “SIMILAR” FORM OF THE BOUNDARY-
LAYER EQUATIONS
2.1. The velocity equation
When the fluid properties are uniform the
equation of motion for the fluid in the boundary
layer is:

ou dug &*u
L g — Pt o S
“ax'”’ay Hegx Yoy O
and the continuity equation is:
ou v
[
ox ' oy 0. @
In these equations:

x = distance measured parallel to the inter-
face from the start of the boundary
layer,

y = distance measured from the interface

and perpendicular to it towards the
main-stream,

u = velocity component in the x-direction,
v == velocity component in the y-direction,
g = value of w in the main-stream, and

v = kinematic viscosity of the fluid.

Equations (1) and (2) are combined by intro-
ducing the stream function ¢ defined by:

U= —"s p=— 3

so that equation (2) is automatically satisfied
and equation (1) becomes:

W w

dug
ay " oxéy

5%

It was shown in Paper 1, Spalding [1], that
this equation has “similar” solutions when the
main-stream velocity g obeys the equation:

L = UG o
ox " &y? dx

o= O ©

where C and n are constants. It was further
shown that by introducing the transformation:

=y, J(25) ©

= i:{; \/ (% ddu; | <

in which £ is the new independent variable and
the stream function { is a function of § only,
equation (4) reduces to the ordinary differential
equation:
3¢ n\ _ d% di\?

The boundary conditions associated with this
equation for the case when mass flows through
the interface are:

d
s-:o,(a—g):o, (=1,

dZ
£-> 0 ,( g 5) - 1.

The present series of papers is concerned with
positive, zero and negative values of {,, the value
of the stream function at the interface, although
in the present paper interest is confined to the
case when this, or its counterpart in different
similar co-ordinates, is zero. As later formulae
will contain this quantity it is given a general
symbol in equation (9).

Equation (8) with boundary conditions (9)
govern the velocity distribution in the boundary
layer for “similar” flows. This form of the equa-
tion has been included here since it will be
necessary to refer to it in Section 2.2. Throughout
the present series of papers, however, a form has
been used which more commonly occurs in

®
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publications on laminar boundary-layer theory.
This is obtained by using, instead of the variables
defined in equations (6) and (7), the variables:

N I

where § is a parameter related to the parameter
n introduced in equation (5) by:
1
P= =)
The equation for “similar” solutions to equation
(4) then takes the form:

(12)

S B =B =0 (13)
with the boundary conditions:
7]:0’ f:fo, f,:owl
b
n-—> 0, f 1. ]

In equations (13) and (14) the primes denote
differentiation with respect to the independent
variable n, and again interest in the present
paper is largely confined to the case when f, in
equation (14), the counterpart of [, in equation
9), is zero.

2.2. The “‘similar” velocity equation when f, = 0
and B is infinite

As was stated in the first two papers of the
present series, solutions to equation (13) with
boundary conditions (14) are required for all
real values of the parameter 8.

Considering only the case f, = 0, equation
(13) is quite suitable for evaluating solutions
numerically for values of § from —0-198838,
when the velocity layer separates (i.e. the wall
shear becomes zero), to high positive values. It
was shown in Paper 2, Spalding and Evans [2],
that for large negative values of 8 the appro-
priate equation is obtained from equation (13)
by replacing both the independent variable 7
and the dependent variable f by pure imaginary
quantities.

The case n = 2 in equation (5) forms the
boundary between real and imaginary zones.
At this value of n, equation (12) shows that 8

undergoes an infinite discontinuity, being large
and positive on the real side (when n < 2) and
large and negative on the imaginary side (n > 2).
For this reason the transformation given in
equations (10) and (11) cannot be used and
therefore numerical solutions cannot be evalu-
ated from equation (13).

By examining equation (5), however, it may
be seen that the case n = 2 corresponds to flow
near a point sink. If two streamlines in such a
flow are regarded as the walls of a converging
channel this case describes the boundary layer
along these walls. The appropriate differential
equation is well known, see for example Pai [6],
and is readily obtained from equation (8), since
when no mass flows through the wall ({, = 0)
the second term on the left-hand side is zero.
The equation is therefore:

d3 'dr\2
Elgpul—(cﬂf) =0 (15)
with boundary conditions:
dg
] (16)
£— oo, d—:, - 1.

It should be noted that equation (15) is not the
appropriate differentiai equation when ¢, is not
Zero.

The solution to equation (15) with boundary
conditions (16) will be given in Section 3.2.

2.3. The “similar” b-equation

The b-equation and the form it takes in
similar co-ordinates were discussed in Paper 3,
Spalding and Evans [3]. Only a brief statement
of the meaning and form of the equation will
therefore be given here.

Assuming uniform material properties and
using rectangular co-ordinates as in Section
2.1, the two-dimensional laminar boundary-
layer equation which expresses the conservation
of a fluid property denoted by P is:

oP oP o*pP

+v - =K

2
" ox ay ox? a7

where x, y, u and v have been defined in Section
2.1, and
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K == a diffusion coeflicient; for mass transfer
it is the coeflicient of diffusion of a mass
component in the fluid mixwure, for heat
transfer it is the thu:mal diffusivity of the
fluid.

Note that the ratio (y/p) appearing in Paper 3
has been replaced by K in equation (17) and in
most formulae to be given later in the present
paper. In Paper 3, v was, in fact, defined as the
quantity Kp. where p is the density of the fluid.

The boundary conditions associated with
equation (17) are:

in the main-stream P =Pg

in the fluid at the interface P == Psg j' (18)
By defining a function of the form:
(P — Ps) ,
N 5 19

where:

Py = value of P in the transferred substance, a
concept which has been discussed by
Spalding [7],

the class of similar solutions to equation (17)
being studied in the present work obey the
differential equation:

b' 4 ofb =0 20)
with boundary conditions:
=0, b=20
. 21
n-—> 00, b-> B

In equation (20) the primes denote differentia-
tion with respect to the independent variable 4
defined in equation (10) and the Prandtl/Schmidt
number o is:

v

o == “'Iz. (22)
In equation (21) the quantity B is:
(Pg— Ps)
= — 23
B=ps = Pp 23)

In addition to the boundary conditions given in
equations (21), the condition:

by =—oafy 249
is also satisfied at the interface, where f; is the
value of the constant occurring in equation (14).

A short calculation from equation (20) gives
for the reciprocal of the group (b//B) the
integral:

FR

exp | Sy b (29)
J0 . 0 R

The main purpose of the present paper is to
obtain values of the quantity (by/B), often
referred to as the “wall gradient”, for ranges of
values of the parameters f and o when the
constant f, is zero. Although the quantities b,
and B are both zero for this case, their ratio is
not since the reciprocal of the integral on the
right of equation (25) is the well-known expres-
sion for the Nusselt number in similar co-
ordinates, namely:

(7)) = &=0

where the Nusselt number Nu and the Reynolds
number Re both have local values.

An expression for the wall gradient (b,/B) in
terms of a “‘similar” boundary-layer thickness
will be given in Section 5.2.

Many other functions of the b-boundary
layer can be evaluated when (b,/B) is known for
fixed values of the parameters 8 and ¢ and some
of these will be plotted and discussed in
Section 7.

(26)

3. SOLUTIONS TO THE VELOCITY EQUATION
3.1. The range —0-198838 < B = 2.0

Solutions to equation (13) with boundary
conditions (14), to a considerably higher
accuracy than those given in Paper 2 and
applied in Paper 3a, were quoted recently by
Bertram and Feller [8] from work done by
Smith [9]. The present author has consulted
only Ref. 8. This gave a table of values of the
wall gradient /'y and the sum (8] + §}) at fixed
values of 8 in the range —0-198838 < B < 2-0.
The boundary-layer thicknesses 8] and &, are
defined in terms of the similar distance co-
ordinate y as:

o df
8 = 1—=1d
b L( d’?) K

e g

@7n

and
(28)
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The values taken from Ref. 8 are given in the
first three columns of Table 1. Other functions
of the velocity boundary layer which are impor-
tant in the present series of papers have been
calculated from these and are also given in
Table 1. The formulae used for evaluating these
were:

8y = [y — B8 + &) (29)
H,, = 5 30
12 = 8:2 ( )
Hy ‘:.f}{ 3: (31)

5% du(, -
o odx B(3,) (32)

ue dés s

F=-0 =2l —pepn (Y

The importance of these functions and their
application to the calculation of boundary-layer
thicknesses for non-similar flows have been
discussed in Paper 1, Spalding [l1]. From
equation (31) it is clear that the quantity f
could have been written as 1/8; where &} is the
shear boundary-layer thickness in similar co-
ordinates, but this notation is not used here.

The quantity F, in equation (33) measures the
rate of growth with distance x of the momentum
thickness §,, and the quantity (82/v) (dug/dx) is
the corresponding measure of the pressure
gradient in the main-stream. It was also shown
in Paper 1 that F, is very close to being a linear
function of (83/v) (dug/dx).

Any pair of exact solutions could be chosen
so as to obtain the constants in such a linear
approximation but it is convenient to choocse the
points at which F, and (8%/v) (dug/dx) become
zero respectively. If this is done with the present
exact solutions the following relationship results:

S2 o
Fy — 044105 — 51604 22 ¢
v dx

where the first two terms on the right represent
the linear approximation and the function £, is a
small correction factor which compensates for
the fact that F, is not exactly a linear function
of (82/v) (dug/dx). Values of £, are also included
in Table 1.

Apart from being more accurate than the
values given earlier in Papers 1 and 2 the
figures contained in Table 1 cover the region

—E, (34)

of decelerated flows in greater detail. This may
be useful when applying these values since the
inaccuracy of the approximate methods dis-
cussed in Paper | is greatest in this region.

For B = 2 most of the original values in
columns 2 and 3 of Table 1 are given to six
significant digits. In calculating the other
functions from these it has been assumed that
the last digit given is exact. This generally
resulted in an accuracy of five significant digits,
although in some cases the last digit is in doubt
by up to 5 units. Where doubt existed about
particular values, the accuracy retained is at
east as high as the original figures allowed.

3.2. The value 8 - - w

Tabte 1 also contains the solution for the case
B -+ oo, namely cquation (15) with boundary
conditions (16). This is one of the few boundary-
layer equations whose solution can be obtained
in closed form. Only the gradient of { with
respect to ¢ is required here and this is (see
Pai [6]):

d 2
dg == 3 tanh? {52 + tanh™* \/§} — 2. (35

From this the gradient at the interface is:

(9?4) _ 2
dezfey V3

(36)

and the displacement thickness in terms of the
similar distance co-ordinate £ is:

ko = dC L / /
5 = j (1- dg) dé = (3y2 —2v3).  (37)

The momentum boundary-layer thickness may
then be evaluated {rom the relationship:

. [=/dO dC) B "d‘“’C) %
= (e (1 =aedos (), -t 09
which is deduced from equation (15) by formal
integration.

The function H,, is then the ratio of (37) to

(38), H,, is the product of (36) and (38) and the
other fusnctions in Table 1 are evaluated from:

8% du(; #y2
e O (39)
Fy = 2(8,)° (40)

and £, is calculated from equation (34).
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Because different similar co-ordinates have
been used for the case 8 = oo, functions such as
the wall gradient and boundary-layer thicknesses
in Table 1 do not form a continuous set with
those for other values of 8. It should be noted
that the wall gradient, which is in fact

(f}i%)
dfz £=0 g

has been written in the same column as f;. The
functions tabulated in the last five columns do
form a continuous set with the other values,
however, since they are independent of the
similar co-ordinates used.

The (I, &) co-ordinates could, of course, have
been used throughout but this would have made
the formulation of the problem unfamiliar to
the reader. It would also have meant treating the
case of zero main-stream pressure gradient
(when 8 = 0 and » is infinite) as an exception.

The values of the functions for B == oo in
Table 1 are exact in the last digit.

4. EVALUATING THE WALL GRADIENT (b,/B)
4.1. The general formula

The methods used for evaluating the integral
on the right-hand side of equation (25) have
already been described in Papers 3a and 6. In
the latter paper it was shown that by dividing
the range of integration into two parts, namely
0 <n <dand d < » < oo, equation (25) may
be written:

B[l oo
() e[

e {S1r@p — o ran}

where the sign preceding the error function is
opposite to that of f(d); since f(d) is generally
positive this is usually negative.

Equation (41) can give high accuracy but only
holds when the distance d is large enough. This
is so when, at the point » == d, the shear stress
is virtually zero (i.e. f’' is negligibly small) and
the stream function f has the value:

f= (7) +fo - 8:)

> (41)

o

“2)

Most of the values of the wall gradient (b,/B)
to be given later in Table 3 were calculated on a
computer. The method has already been
described in Paper 6.

4.2, Asymptotic expansions for high o

For very high values of o the b-boundary
layer is very thin and only low values of 7%
contribute significantly to the integral in equation
(25) or, in other words, only the first term on the
right-hand side of equation (41) is important.
Under these circumstances the step-size used for
integrating on the computer, namely 4y = 0-1,
was too large to give high accuracy. For these
conditions, therefore, the asymptotic formulae
given in Paper 3a were used.

Because very accurate solutions to the velocity
equation are now available these formulae have
been recalculated. The method by which the
asymptotic expansions were obtained is given
below in a little more detail than in the earlier
paper since this may be useful to someone
wishing to make use of the asymptotic expan-
S10D8.

The stream function f is first expandad in
terms of derivatives at the interface giving:

fon® f'i{vg ot | fun®
f=mr Tt e @

where the suffix 0 denotes the value at the inter-
face and f,, has been taken to be zero. Inserting

equation (43) into equation (25) and changing
the integration variable from 4 to ¢ where:

v = (-‘3{7) 7 @“4)
the integral to be evaluated becomes:
E= f: e~p~2% exp — {Ayp*® + A58
4+ 4™+ ... de. (45)

Since the values of ¢ and f, are known the
value of (by/B) may be obtained, if values of E
are calculated, by using the relationship:

bil) . ?, o f :) ™ 1/3

B)"E "3‘“{‘) :

The coefficients 4, occurring in equation (45)
are given by the general formula:

(46)
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As was noted in Paper 3a, the coefficients A4,,
A;, and A4, are zero and A4, is unity.

The integral £ may now be expressed as a
series in inverse powers of o in the following
way.

Expanding the second exponential function
occurring in the integrand of equation (45) as a
power series in g, each term under the integral
sign is of the form e~* ¢™/3, where m has a
different value for each term. Using the relation-
ship:

© m -+ 3

— m/3 _ R
j e g dcp*l’( 3 )

0

(48)

where I" denotes the gamma function, the expres-
sion for E may be evaluated term by term. On
collecting terms in the same powers of ¢ the
series for F takes the form:
1 =
E=T (3) + Z e

g =1
Using the numerical values I'(3) = 2-6789385,
I'(3) = 1-3541179, I'(1) = 1 and the abbrevia-
tion:

B

o

the first nine coefficients 4, in equation (49)
become:

(49)

D= (50)

a, = 0-41009927D (51)
ay = 0-20637046D? (52)
ay = 0-14469576D*
+ 0-059531965 (1 — 28) (53)
ay = 012182734D*
+ 0:013019024 (1 — 58)D (54)
as = 0-11608339D5
+ 00058962987 (1 — 128)D? (55)
ag = 0-12133900D°
+ 0-0018374063 (1 — 478)D*
— 0-0066146629 (1 — B — 28%)  (56)
a; = 0-13651859D7
— 00019337671 (1 + 588)D*
— 0-43306747 x 10-3(9 — 168
— 448)D (57)
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g = 0-16324225D*
— 0-0066333360 (1 + 238) D
— 0-15315062 X 10~ (296 — 7698

— 22462 D2 (58)
ag = 0-20558658 D"
— 0013482111 (1 + 168)D*
— 0-2651380 x 10~ (21,893
— 77,4328 — 230,15882) D
- 0-31180229 x 10-% (23 - 878
— 2198% — 948%). (59)

Numerical values for these nine coefficients
for the values of 8 occurring in Table 1 for which
expansion (49) can be used are given in Table 2.
To a large extent this table supersedes Table 2
of Paper 3a, except that values of 8 greater than
2 are not covered in the present table because
accurate values of fy were not available.
Where differences exist between values given in
Paper 3a and the present ones, the latter are to
be preferred.

4.3. The separation point for high ¢

The above series expansions cannot be used
for the separation point when § = —0-198838
and f, == 0 because the transformation given
in equation (44) is invalid. The method for
obtaining a series expansion for this case was
given fully in Paper 3a and little new can be
added here except that the coeflicients in the
series have been recalculated. The formulae for
this case are given under Table 2 where ;" has
the value 0-198838.

5. TABLE OF VALUES OF (b,/B)
5.1. Discussion of Table 3

The above methods have been used to
evaluate the wall gradient (b4/B) for the values
of B included in Table 1 and covering a wide
range in the parameter o. The resulting values
are given in Table 3. The quantities f; and &}
used in obtaining (b,/B) are given at the head
of the relevant column.

In each column a broken horizontal line
separates values calculated by the computer
from those obtained using the asymptotic
formula. This means that at that value of o,
which is different for each 8, the two methods
agreed in the sixth significant digit. It does not
mean, however, that the asymptotic series
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cannot be used for lower values of ¢. Indeed, as
was demonstrated in Paper 3a, when B is in the
range —0-1 < B < 2 as well as for the separation
point itself, the series are very useful even when
o is near unity, although the accuracy is lower
than for high o.

The error in the values of (by/B) given in
Table 3 is believed to be confined to the sixth
significant digit. It is possible for the computing
programme to give an error of 5 units in this
place but where it was possible to check the
values they were found to be correct to within
two units in the sixth place. In principle, how-
ever, this last place should only be regarded as
an estimate of the correct value.

The results for high values of ¢, approximately
o > 10, for the two columns 8 = —O0-19 and
B = —0-18, could contain a greater error than
elsewhere because the asymptotic formulae
are not very reliable in this region. This may be
seen on inspecting the coefficients in Table 2,
where no asymptotic formula occurs for
8 = —0-195.

5.2. Calculating other functions from (by/B)

Many other functions associated with the
b-boundary layer may be calculated from values
of (by/B) for known values of the parameters
B and o. The formulae for doing this are given
below, only those applicable to the case fy = 0
being included; detailed discussion of these
formulae was given in Paper 3.

Nu 1 (b,
wen == (3) (60
d,Rel2 (2 — P2 (b;,)
- = 2o (61)
X o B
4y _ 1 (b)?
=3 ©
42 dug _ B
S dx = GyBR (63)
ug d42 21 —p
i il il )
42 dug B (b(,)2
e (65)
v dx o2\ B
dd4z  2(1 — b,
Ta-e ) @

The quantities X, Y, W and Z considered in earlier
papers, which are used in approximate methods
of calculating functions in the b-boundary layer
when o is high, are not discussed in the present
paper and are therefore omitted from the above
list.

When considering the velocity equation in
Section 3 above, it was convenient to use
boundary-layer thicknesses, written with an
asterisk, which were defined in terms of the
similar co-ordinate ». In the same way thick-
nesses associated with the b-boundary layer
may be defined as:

. (1 dug)V?
4 = 4, £ ‘d;} (67)
and
N 1 duG 1/2
4y =4y {w E} (68)

where 4, and 4, are the conduction and convec-
tion boundary-layer thicknesses defined in the
notation list in terms of the physical distance y.
The present author has found that working in
terms of 47 and 4} sometimes simplifies formulae
and shortens calculations connected with similar
boundary layers.

It may be realized why (bg/B) is called the
“wall gradient” since, on examining equation
(67), it is seen to be the reciprocal of 43.

6. CALCULATING (b;/B) FOR VALUES OF ¢ OUT-
SIDE THE RANGE COVERED IN TABLE 3
6.1. High values

For most values of 8, Table 3 gives good con-
tinuous coverage of the Prandtl/Schmidt number
up to ¢ = 100 but there is a wide gap between
this value and ¢ = 1000. The procedure for
obtaining values for o greater than 100 is straight-
forward since only a few terms in the asymptotic
series of Table 2 are required. For this reason
very high values of ¢ have not been included in
Table 3.

This does not hold, however, for the region
approaching but not at the separation point
when B has the values —0-195, —0-19 and
—0-18. For the first of these no useful asymptotic
series could be found, for the second the series
given in Table 2 is reasonably accurate only
when o > 1000 and for the third accuracy to four
significant digits was possible when ¢ = 100.
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6.2. Low values

When o < 0-0001 the wall gradient (by/B) may
be obtained to good accuracy by taking the
first term on the right-hand side of equation (41)
to be equal to the distance d and evaluating the
second term from suitable values of the functions
f(d) and [° fdn obtained from solutions to the
velocity equation. These quantities and the
formula to be used are given in Table 4.

Table 4. Functions for evaluating (bi/B) when
¢ < 0-0001

Formula:

(8= (2 - e

wo ]~ 2

B d f@) Jofdy
—0-198838 54 3-04164 5-15335
—0-195 54 3-28316 5-91030
—019 54 3-39337 6-26970
—018 4-8 2:92909 4-78499
—0-16 4-8 3-09371 5-25598
—0-14 4-8 3:20432 5-58319
—0-10 4-8 3-35742 6:05042
—0-05 4-2 2-88817 4-54870

0-0 62 4-98322 12-7674

0-05 42 3-05849 5-00374
0-10 ! 42 3-11984 5-17306
02 42 3-21593 5-44433
03 36 2:68948 3-86245
0-4 36 2:74768 3-99968
0-5 36 2-79567 411511
06 36 2-83618 421423
0-8 36 2:90141 4-37722
1-0 36 2-95216 4-50708
1-2 3-0 2:39341 2:99810
16 30 2-45616 3-12827
2:0 3-0 2-50273 3-22789

For ¢ = 0-0001 this agrees with the values
given in Table 3 by better than three units in the
fifth significant digit. For smaller o the accuracy
would be better. It should be noted that using
the value f(d) = (d — &), instead of the values
of f(d) listed in Table 4, slightly improves the
agreement with computed values at ¢ = 0-0001.
D

7. CURVES OF FUNCTIONS OF THE 5-BOUNDARY
LAYER
7.1. General discussion

Many functions relating to the b-boundary
layer can be plotted from the results contained
in Table 3. Some functions which are useful in
the general methods of boundary-layer calcula-
tion mentioned in Section 1.1 will be discussed
in the present section.

If 8 represents a boundary-layer thickness
relating to the velocity boundary layer, it was
seen in Papers 1 and 2 that in order to apply
some of these general methods, it was necessary
to know how the function (u¢/v) (d82/dx) varied
with (8%/v) (dug/dx). The first of these is a
measure of the rate of growth of & with distance
x and the second is the corresponding measure
of the main-stream pressure gradient.

In plotting these relationships for the b-boun-
dary layer when the parameter ¢ was small, it
was found necessary to multiply the functions
by ¢ in order to bring closer together curves for a
wide range of ¢. If 4 is the relevant boundary-
layer thickness, this means that the functions
are in fact (ug/K) (d4%/dx) and (4%/K) (dug/dx),
where K is the thermal diffusivity for heat
transfer or the diffusion coefficient for mass
transfer. This form of the functions is not
surprising when it is realized, on comparing
equations (1) and (17), that K plays the same
role in the b-boundary layer as does v in the
velocity layer.

The forms of these relationships are, of course,
obtained from exact similar solutions to the
boundary-layer equations. An important
assumption underlying much of the present work
is that these relationships, once established, are
quite generally valid and can therefore be used
to estimate boundary-layer thicknesses and
transfer rates for any uniform property, laminar
boundary layer.

The relationships for large values of o were
discussed in Paper 3a. The present results are
more accurate than those given earlier but the
difference is too small to be seen even when the
figures are drawn to a large scale. The reader is
therefore referred to Paper 3a for a more
detailed discussion of the case of large o. The
region of decelerated flow in the range
—0-198838 < B < —O0-1 was not adequately
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\ tion thickness 4y
\ separation points again
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covered in that earlier paper, however, and
figures for this will be discussed below.

7.2. The conduction thickness for low o

Figure 1 applies to the conduction thickness
4, and covers the range in o from 0 to 1:0.
Although curves are not included for all values
of o contained in Table 3, interpolation for inter-
mediate values is straightforward.

When ¢ is small the wall gradient (b;/B) is
almost proportional to ¢'/2, and for very small
o it tends to the value (2¢/m)V2. Inserting this
last value into equations (63) and (64) and
eliminating B between them gives for the line
¢ = 0 in Fig. 1, the equation:

ug ddy
K dx =

4% dug
K dx

T —

(69)

a straight line of slope —2 cutting the abscissa
at =/2 and the ordinate at «. The point marked
as the separation point for this line is merely its
intersection with the line for 8 = —0-198838;
it has the co-ordinates (—0-0994195 =,
0-801162 7).

The line given by equation (69) can be
interpreted as that applicable to inviscid flow
when v is zero, as well as the limiting case when,
although v is not small, K has a very large value.
In either of these cases the velocity boundary
layer has a negligible effect. The displacement of
any other curve from this line is then a measure
of the amount by which the velocity boundary
layer affects transfer rates; this displacement is
then greater and the curvature more pronounced
in regions of decelerated flows where the velocity
layer is thick. In spite of this curvature, which
increased with increasing o, these curves would
be considerably easier to apply than those for
high ¢ discussed in Paper 3a.

As main-stream acceleration increases each
curve approaches the line for o = 0 and the
slope tends to the value —2 from below. Since
the line for B8 = oo has exactly this slope it
appears that no solution for this case occurs on
this figure when plotted in this way.

7.3. The convection thickness for low o
The relationship for the convection thickness
4, is shown in Fig. 2.

On this figure the straight line for ¢ == 0 is
readily shown to be:
uo ddf 4, 43 duo

K dx =« K dx

again a straight line of slope —2 but this time
cutting the abscissa at 2/7 and the ordinate at
4/m. The separation point for this line has the
co-ordinates (—0-397676/m, 3-204648/m).

The remarks made about Fig. 1 in tbe pre-
ceding section apply also to Fig. 2 with obvious
modification where necessary.

(70)

7.4. Variation of the ratio (4,/4,) with pressure
gradient

When considering the velocity boundary layer
it was shown in Figs. 4(a) and (b) of Paper 2 how
the ratio of boundary-layer thicknesses Hy,
(=0,/8,) varied with the pressure gradient
parameter (8%/v) (dug/dx). Figs. 3 and 4 of the
present paper show the analogous relationship
for the b-boundary layer; Fig. 3 covers the range
of low o from 0 to 2-0 and Fig. 4 high values
from 1 to infinity. In Fig. 3 the pressure gradient
parameter plotted along the abscissa is
(43/K) (duc/dx).

On this figure “similar” solutions, namely
those for a fixed value of 8, may be shown by
eliminating (by/B) between equations (62) and
(65), to be of the form:

A2 1 A% dug

4, B K dx ()
a straight line of slope 1/B8 passing through the
origin. A few of these lines are shown in the
figure. From equation (62) it may also be shown
that 4,/4, has the value 2/7 when ¢ is zero what-
ever the pressure gradient in the main-stream.

The corresponding curves for high values of
o are plotted in Fig. 4 where the functions used
for Fig. 3 have been multiplied by o¢'/® in order
to bring curves for a wide range of o close
together. This multiplying factor is effective for
accelerated and slightly decelerated flows where
the wall gradient (by/B) is proportional to ¢'/3
for large o. For decelerated flows approaching
separation conditions, however, it is not so
useful because, since (by/B) is then proportional
to o%/% for large o, the point for ¢ = oo is at the
origin.
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7.5. Decelerated flow and high o

Figures 5 and 6 give relationships for de-
celerated flows and high values of & which could
not be adequately treated in Paper 3a because
accurate solutions to the velocity equation were
not known.

Figure 5, which refers to the conduction
thickness 4,, has co-ordinates appropriate to the
case when the wall gradient (b,/B) is proportional
to o3, Because they are so close together curves
for only a few values of o are given. That for
o = 1000 has been stopped at 8 = —0-19 as
no asymptotic formula could be found for
B = —0-195. The slopes of the curves in this

region must be close to that for the line f =
—0-198838, that for 0 = oo eventually having
exactly that slope as it must meet this line at
infinity.

Figure 6 refers to the convection thickness
4, and is an improved version of Fig. 2(b) of
Paper 3a. In that earlier figure the curves were
drawn so that separation points for the range of
values of ¢ were close together. In Fig 6 curves
for slightly decelerated flows are close together
but the separation points are far apart. Some of
the curves have been omitted in the region
between 8 = 0 and B = —0-1 where they are
close together and intersect.

O Separation points

Decelerated
flows

0=¢

wd
—

-G

-2'5 -2:0

i du

K dx

FiG. 5. The same relationship as in Fig. 1 but for decelerated flows and high values of o. The multi-
plying factor ¢~/2 brings curves for a wide range of o close together.
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Résumé—Cet article concerne 1’étude des écoulements 2 uniformes 4 couche limite laminaire avec
transport de masse  la paroi. Dans ce cas, des solutions semblables de 1’équation dynamique ont déja
été donnees; elles conduisent a une grande précision et couvrent un domaine d’écoulements principaux
décélérés et modérément accélérés. Les solutions sont tout d’abord exprimées sous 1a forme adoptée
dans les premiers articles de cette série et sont ensuite utilisées pour Pévaluation du gradient 4 la
paroi pour la couche limite-b (C’est-d-dire, nombre de Nusselt en coordonnées adimensionnelles).
Les développements en série donnant ce gradient a la paroi, quand le nombre de Prandtl/Schmidt est
grand, présentés dans Particle 3(a), ont été recalculés pour en améliorer la précision. Une table des
valeurs du gradient a laparoi couvre le domaine des o compris entre 0,0001 et 1000; en dehors de ¢ce
domaine, il peut étre rapidement calculé. Quelques fonctions obtenues & partir de ce gradient a la
paroi ont été représentées graphiquement et sont discutées.

Zusammenfassung—¥s wird iiber laminare Grenzschichtstrémungen mit einheitlichen Stoffeigen-
schaften berichtet, fiir den Fall, dass kein Stofftransport durch die Grenzflichen auftritt. Ahnlich-
keitslosungen grosser Genauigkeit sind dafiir in der Literatur fiir den Bereich verzigerter bis schwach
beschleunigter Hauptstrémungen angegeben. Die Ldsungen wurden erst in die Form gebracht, wie
sie in fritheren Arbeiten dieser Reihe verwendet war, um dann damit den Wandgradienten fr die
b-Grenzschicht (d.h. die Nusseltzahl in Ahnlichkeitskoordinaten) zu errechnen. Die Reihenentwick-
lungen fiir den Wandgradienten bei grosser Prandtl/Schmidtzahl o, die schon in der Arbeit 3(a)
angegeben sind, wurden in der Genauvigkeit gesteigert. Eine Tabelle fiir die Werte des Wandgradienten
umfasst ¢ von 0,0001 bis 1000, wobei fiir beide Richtungen ausserhalb dieses Bereiches Berechnungen
moglich sind. Einige aus dem Wandgradienten erhaltene Funktionen werden aufgezeichnet und
diskutiert.

Anrorsiua—B macroAmell CTathe pacCMAaTpPHBATCA TeueHME JAMUHAPHOTO IIOPAHHYHODO
CNIOA ¢ HOCTOAHHBME QusmuecKuMu XapawTepucTuxamu. B coydae, xorga Macca He npoXojur
4yepe3 TpaHuNy paspena. B nwreparype pis gaEHoro onyuad Obnm HalimeHol uonoOmsie
pellieAns [N YpaBHEHUA JABWKEHHA, OTH pellleHuA JalH ¢ COoJbIIONH TOYHOCTBIO JAH
YCKOpPEeHHHIX M 3aMeJICHHLIX BHEMHHX NoToKoB. CHAavazna pelIeHUA npuBefeHH B TOM BMJE,
B HKaKOM OHHM [aHBl B IEPBHX CTAThAX HACTOALUel CepMH, a 3aTeM WCIONB30BAHH A
BEMMCHEHMA TPAfMEHTa HA CTeHKe A b-morpamuunoro cios (r.e. xpurepuit Hyccemsta B
KoopauHarax mopobuaA). Iaa yTouneHuA OHUI IPOHSBEIEH NMEPepaCyYsT PasnoMeHUui B PAX ¢
1eNpI0 TMONYYeHUA rPafMeHTa HA CTeHKA npu OoiapmioM 3BHa4YeHmu Kputepusa IIpanpras-
Imupra o, mpusefensoM B crarhke 3{a). Tabauua sHaveHull TpajuenTa Ha CTEHKE BHIIOUYaeT
3uHauenud ¢ oT 0-0001 mo 1000; sT0T TpagMeHT Ha CTeHKe MOeT OBITh JETrKO BRIYMCIEH U 34
npexenaMu 5TOTO NMANA30HA, JanH rpaduyecky N IPOAHATN3HPOBANE HEKOTOPHe QYHRIuN,
MONyYeHHBe NPU ONpeledeHNN PPajieHTa Ha CTeHKe.



