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Abstract-The present paper is concerned with uniform property, laminar boundary-layer flows when 
no mass passes through the interface. Similar solutions to the velocity equation for this case were 
found in the literature; these were given to high accuracy and covered the range of decelerated and 
moderately accelerated main-streams. The solutions are first expressed in the form adopted in the first 
papers of the present series, and are then used in evaluating the wall gradient for the b-boundary layer 
(i.e. the Nusselt number in similar co-ordinates). The series expansions for obtaining this wall gradient 
when the Prandtl/Schmidt number D is large, already given in Paper 3(a), have been recalculated to 
improve their accuracy. A table of values of the wall gradient covers the range of Q from O+OOOl to 
1000; it can readily be calculated in both directions outside this range. Some functions obtained from 

the wall gradient are plotted and discussed. 

NOTATION 

Where the quantities in the following list have 
dimensions these are given in brackets, otherwise 
they are dimensionless. 

% 

4, 

b, 

b' 03 

Jc 

C, 
4 

D, 

.K 

coefficients occurring in equation {49) 
and defined in equations (51) to (59) ; 
coefficients occurring in equation (45) 
and defined in equation (47); 
conserved fluid property in dimension- 
less form defined in equation (19); 
discussed in Paper 3 ; 
gradient of b in the fluid adjacent to the 
interface; see equation (24); 
value of b in the main-stream; it is the 
driving force for mass transfer; see 
equation (23) ; 
constant occurring in equation (5); 
dimensionless distance occurring in 
equation (41); it is the smallest con- 
venient value of the similar co-ordinate 
7 at which the flow can be regarded as 
inviscid; 
abbreviation for @/(f\;‘)4J3 which occurs 
in the expressions for the coefficients a,; 
integral defined by equation (45) evalu- 
ated numerica~y from equation (49); 

E22) correction factor defined by equation 
(34) tabulated in Table 1; 

.fi dimensionless stream function; dehned 
by equation (11) ; 

Jo, f :’ 

.rg, 
1) values off and its derivatives at the 

interface; 

r;,? function, defined in equation (33), 
giving rate of growth of the momentum 
thickness 8,; 

H;z, ratio of displacement thickness 6, to the 
momentum thickness Sz; 

H 24, ratio of momentum thickness 6, to shear 
thickness 6 4 ; 

K thermal diffusivity of the fluid for heat 
transfer or the diffusion coefficient of a 
mass component in the fluid mixture 
for mass transfer (ft2/h); 

m, number occurring in equation (48) 
specifying terms in the expanded form 
of equation (45); 

%A, 
constant occurring in equation (5); 
Nusselt number in terms of the distance 
x; 

p, any fluid property, expressed in suitable 
dimensionless form, which is conserved 
during transfer processes; 

35 
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PG, 
ps, 
PT, 

43 

r, 

Re, 
u, 

UG, 
V, 

X, 

Y, 

value of P in the main-stream : 
value of P in the fluid at the interface; 
value of P in the transferred substance 
(see Spalding [7]) ; 
number specifying terms in equation 

(49) ; 
number specifying terms in equation 

(47) ; 
local Reynolds number (=-Uox/Y) ; 
velocity component parallel to the inter- 
face (ft/h) ; 
value of u in the main-stream (ft/h) ; 
velocity component perpendicular to the 
interface (ft/h) ; 
distance parallel to the interface 
measured from the start of the boundary 
layer (ft) ; 
distance perpendicular to the interface 
measured from the interface towards the 
main-stream (ft). 

Greek symbols 
parameter occurring in the similar form 
of the velocity equation and defined in 
equation (12); 
fluid property called the exchange 
coefficient and defined as Kp, (lb/ft h); 
any boundary-layer thickness associated 
with the velocity boundary layer (ft); 
displacement boundary-layer thickness; 
=s,“(l - @o) dy, (ft); 
displacement thickness in terms of 
similar co-ordinates; defined in equa- 
tions (27) and (37) for different similar 
co-ordinates; 
momentum boundary-layer thickness; 

= ]” (+G) (1 - u/uG) dy, (ft>; 
momentum thickness in similar co- 
ordinates ; defined in equations (28) and 
(38) for different similar co-ordinates; 
shear boundary-layer thickness; 

= ~G/@d?&=o, (ft>; 
shear thickness in similar co-ordinates; 
an alternative expression for l/f:, but 
not used in the present paper; 
any boundary-layer thickness associated 
with the b-boundary layer, (ft); 
convection thickness; 

= J-7 b&G) (1 - b/B) dy, (ft); 

convection thickness in similar co- 
ordinates; defined by equation (68); 
conduction thickness; -- B/(~b/2.&,=,,. 
(ft) ; 
conduction thickness in similar co- 
ordinates, defined by equation (67); 
dimensionless stream function; defined 
by equation (7); 
value of 5 in the fluid at the interface 
where 6 = 0; 
dimensionless distance co-ordinate; 
defined by equation (10) ; 
dynamic viscosity of fluid (lb/ft h); 
kinematic viscosity of fluid; = p/p, 
(ft2/h) ; 
dimensionless distance co-ordinate; 
defined by equation (6); 
density of fluid (lb/ft3) ; 
Prandtl or Schmidt number of fluid; 
= v/K; 
integration variable used in Section 4.2; 
defined in equation (44); 
stream function; defined by equation 
(3), (ft”/h). 

Subscripts 

G, denotes fluid state in the main-stream; 

0, denotes fluid state at the interface; 

4, denotes terms in equation (49); 

y, denotes terms in equation (45) like A, in 
equation (47). 

1. EARLIER PAPERS IN THE SERIES 

1.1. IntrodwTion 
THE present series of papers is concerned with 
methods of calculating mass transfer rates for 
laminar boundary-layer flows when the fluid 
properties may be considered uniform through- 
out and internal dissipation of energy is negli- 
gible. Within these limitations, however, three 
important parameters associated with the 
problem are allowed to take values over as wide 
a range as it is practicable to cover. These are 
(a) the Prandtl/Schmidt number of the fluid, 
(b) the pressure gradient in the main-stream and 
(c) the mass transfer rate. Both inward and out- 
ward mass transfer through the interface are 
considered. 

It has been shown in earlier papers that the 
problem of predicting mass transfer rates reduces 
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to the simultaneous solution of two partial 
differential equations, (1) the velocity equation, 
which is concerned with the distribution in the 
boundary layer of purely mechanical quantities 
like velocity, momentum and shear stresses, and 
(2) the b-equation, which governs the distribution 
of other conserved fluid properties. 

For a general type of problem, such as one 
where fluid flows over a surface on which the 
distribution of both pressure gradient and mass 
transfer rate are arbitrary, the latter quantity 
usually being unknown, solution of the equations 
presents a formidable task and is rarely 
attempted. 

On the other hand the equations possess 
“similar” solutions in which the three parameters 
listed above may take any values, or combination 
of values, likely to be encountered in any 
practical problem. These “similar” solutions 
form the basis of methods of boundary-layer 
calculation which may be used for any boundary- 
layer flow. Although these general methods are 
approximate by nature they would be expected 
to give the order of accuracy required for most 
engineering and design purposes. 

The first part of the problem to be solved 
therefore is to obtain continuous families of 
“similar” solutions at convenient, if possible 
regular, intervals in the three varying parameters. 
The second part is to devise suitable general 
methods of boundary-layer calculation and 
draw up appropriate tables and charts from the 
“similar” solutions for use with these methods. 

1.2. Summary of earlier papers 
The first two papers in the series, Spalding [ 11, 

Spalding and Evans [2], were concerned exclu- 
sively with the velocity equation, the first 
describing the relevant general method applic- 
able to any boundary-layer flow with mass 
transfer, the second supplying the appropriate 
tables and charts for use with this method and 
derived from exact similar solutions. 

Paper 3, Spalding and Evans [3], considered 
the b-equation. Only a few exact similar solu- 
tions to this equation could be found in the 
literature and these were tabulated. Other tables 
were also supplied from which approximate 
solutions could be obtained for ranges in the 
three parameters considered. 

Paper 3a, Evans [4], which was also concerned 
with the b-equation, considered the case when 
B, the driving force for mass transfer, was zero 
and the Prandtl/Schmidt number c was greater 
than 0.5. Series in inverse powers of u were 
given from which the gradient at the interface 
for the b-boundary layer could be evaluated for 
any high value of (T and for a wide range of 
main-stream pressure gradient. Even for c near 
unity the series gave good accuracy. 

In Paper 6, Evans [5], methods were given for 
evaluating this gradient accurately if similar 
solutions to the velocity equation are known. A 
table of values of this gradient was also given for 
the case of zero main-stream pressure gradient 
covering wide ranges in the mass transfer rate 
and Prandtl/Schmidt number. 

1.3. How the present paper is related to preceding 
papers 

The present paper, like Paper 3a, Evans [4], is 
concerned with the case when the driving force 
for mass transfer is zero. The inclusion of the 
case of zero mass transfer in a series mainly 
devoted to methods of predicting mass transfer 
rates has already been justified in the earlier paper. 
Since writing that paper, however, developments 
have occurred which made it possible to extend 
the range in the parameters for which results 
could be obtained as well as to improve the 
accuracy. 

Firstly, similar solutions to the velocity 
equation were found in the literature giving 
considerably higher accuracy than was available 
hitherto. These were particularly useful for 
decelerated flows, when separation conditions 
are approached, since in that region they were 
given at small intervals in the relevant parameter. 
Unfortunately, however, as they were largely 
confined to wedge-type flows, they did not 
include cases of very highly accelerated main- 
streams. 

Secondly, a method was evolved for evaluating 
the wall gradient to the b-boundary layer 
accurately from solutions to the velocity equa- 
tion. This method, which was described in 
Paper 6, could be used for any values of the three 
parameters mentioned above. The calculations 
were relatively short even for low values of the 
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Prandtl/Schmidt number; these cases had previ- 
ously involved rather long calculations. 

Thirdly, a computer became available for 
carrying out the necessary calculations. Apart 
from increasing the speed with which wall 
gradients could be evaluated, this allowed the 
use of more accurate formulae for numerical 
integration. 

In many respects, therefore, the present paper 
supersedes Paper 3a, although most of the 
discussion contained in that paper will not be 
repeated here. On the other hand, since more 
accurate solutions to the velocity equation are 
now available, the series expansions used in that 
paper for evaluating the wall gradient for high 
values of the Prandtl/Schmidt number have been 
recalculated. In order to present these, therefore, 
a certain amount of repetition will be necessary. 

2 THE “SmAR” FORM OF THE BOUNDARY- 
LAYER EQUATIONS 

2.1. The velocity equation 
When the fluid properties are uniform the 

equation of motion for the fluid in the boundary 
layer is: 

au au duo &l u -.- _+ 0 - = u(: -^.I- + v -- 
ax ay dx +j8 

and the continuity equation is: 

(1) 

In these equations : 
x = distance measured parallel to the inter- 

face from the start of the boundary 
layer, 

y = distance measured from the interface 
and perpendicular to it towards the 
main-stream, 

U = velocity component in the x-direction, 
U = velocity component in the y-direction, 
uo = value of u in the main-stream, and 
Y = kinematic viscosity of the fluid. 

Equations (1) and (2) are combined by intro- 
ducing the stream function # defined by: 

a& aU!J 

so that equation (2) is automatically satisfied 
and equation (1) becomes : 

It was shown in Paper 1, Spalding [ll, that 
this equation has “similar” solutions when the 
main-stream velocity MG obeys the equation: 

where C and II are constants. It was further 
shown that by introducing the transformation: 

(6) 

in which 5 is the new independent variable and 
the stream function 5 is a fiction of 4 only, 
equation (4) reduces to the ordinary differential 
equation : 

d35 
&& 

The boundary conditions associated with this 
equation for the ease when mass flows through 
the interface are: 

The present series of papers is concerned with 
positive, zero and negative values of co, the value 
of the stream function at the interface, although 
in the present paper interest is confined to the 
case when this, or its counterpart in different 
similar co-ordinates, is zero. As later formulae 
will contain this quantity it is given a general 
symbol in equation (9). 

Equation (8) with boundary conditions (9) 
govern the velocity distribution in the boundary 
layer for “similar” flows. This form of the equa- 
tion has been included here since it will be 
necessary to refer to it in Section 2.2. Throughout 
the present series of papers, however, a form has 
been used which more commonly occurs in 



MASS TRANSFER THROUGH LAMINAR BOUNDARY LAYERS-7 39 

publications on laminar boundary-layer theory. 
This is obtained by using, instead of the variables 
defined in equations (6) and (7), the variables : 

(11) 

where p is a parameter related to the parameter 
n introduced in equation (5) by: 

(12) 

The equation for “similar” solutions to equation 
(4) then takes the form: 

J”” + -8” + /3( 1 - j”’ “) =I 0 (13) 

with the boundary conditions : 

7) = 0, f =,fo, f' = 0 1, 
Z (14) 

7-f a, f’ + 1. i 

In equations (13) and (14) the primes denote 
differentiation with respect to the independent 
variable 7, and again interest in the present 
paper is largely confined to the case when f. in 
equation (14) the counterpart of 5” in equation 
(9), is zero. 

2.2. The “similar” velocity equation when f. = 0 
and p is injinite 

As was stated in the first two papers of the 
present series, solutions to equation (13) with 
boundary conditions (14) are required for all 
real values of the parameter 8. 

Considering only the case f. = 0, equation 
(13) is quite suitable for evaluating solutions 
numerically for values of /I from -0*198838, 
when the velocity layer separates (i.e. the wall 
shear becomes zero), to high positive values. It 
was shown in Paper 2, Spalding and Evans [2], 
that for large negative values of p the appro- 
priate equation is obtained from equation (13) 
by replacing both the independent variable 3 
and the dependent variable f by pure imaginary 
quantities. 

The case n = 2 in equation (5) forms the 
boundary between real and imaginary zones. 
At this value of n, equation (12) shows that /3 

undergoes an infinite discontinuity, being large 
and positive on the real side (when n < 2) and 
large and negative on the imaginary side (n > 2). 
For this reason the transformation given in 
equations (10) and (11) cannot be used and 
therefore numerical solutions cannot be evalu- 
ated from equation (13). 

By examining equation (S), however, it may 
be seen that the case n = 2 corresponds to flow 
near a point sink. If two streamlines in such a 
flow are regarded as the walls of a converging 
channel this case describes the boundary layer 
along these walls. The appropriate differential 
equation is well known, see for example Pai [6], 
and is readily obtained from equation (8), since 
when no mass flows through the wall (co = 0) 
the second term on the left-hand side is zero. 
The equation is therefore: 

with boundary conditions : 

It should be noted that equation (15) is not the 
appropriate differentiai equation when &, is not 
zero. 

The solution to equation (15) with boundary 
conditions (16) will be given in Section 3.2. 

2.3. The “similar” b-equation 
The b-equation and the form it takes in 

similar co-ordinates were discussed in Paper 3, 
Spalding and Evans [3]. Only a brief statement 
of the meaning and form of the equation will 
therefore be given here. 

Assuming uniform material properties and 
using rectangular co-ordinates as in Section 
2.1, the two-dimensional laminar boundary- 
layer equation which expresses the conservation 
of a fluid property denoted by P is: 

(17) 

where x, y, u and v have been defined in Section 
2.1, and 
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I( = a diffusion coefhcient; for mass transfer 
it is the coefficient of’ ditIusion of a mass 
component in the fluid mixture, for heat 
transfer it is the thc.mal diffusivity of the 
fluid. 

Note that the ratio (y/p) appearing in Paper 3 
has been replaced by K in equation (17) and in 
most formulae to be given lafcr in the present 
paper. In Paper 3, “J was, in fact, defined as the 
quantity Kp. where p is the density of the fluid. 

The boundary conditions associated with 
equation (17) are: 

in the main-stream P=Po 1 

in the fluid at the interface P = PS 
t. (18) 
J 

By defining a function of the form: 

where : 

PT = value of P in the traruferred substance, a 
concept which has been discussed by 
Spalding [7], 

the class of simiIar solutions to equation (17) 
being studied in the present work obey the 
differential equation : 

b”+afb’=O PO> 

with boundary conditions: 

rl=O, b==O 

’ 
(21) 

?+cQ, b+B I 

In equation (20) the primes denote differentia- 
tion with respect to the independent variable q 
defined in equation (10) and the Prand~~Sch~idt 
number u is: 

(T =.Y 
K’ 

In equation (21) the quantity B is: 

(22) 

(23) 

In addition to the boundary conditions given in 
equations (21), the condition : 

bl, = - ufo (24) 

is also satisfied at the interface, wheref, is the 
value of the constant occurring in equation (14). 

A short calculation from equation (200) gives 
for the reciprocal of the group (h’/&‘,l the 
integral : 

The main purpose of the present paper is to 
obtain values of the quantity (hi/B), often 
referred to as the “wall gradient”. for ranges of 
values of the parameters @ and 0 when the 
constant .I0 is zero. Although tlte quantities b,’ 
and 5 are both zero for this case, their ratio is 
not since the reciprocal of the integral on the 
right of equation (25) is the well-known expres- 
sion for the Nusselt number in similar co- 
ordinates. namely : 

where the Nusselt number NU and the Reynolds 
number RE both have local values. 

An expression for the wall gradient (b,/B) in 
terms of a “similar” boundary-layer thickness 
will be given in Section 5.2. 

Many other functions of the b-boundary 
layer can be evaluated when (~~~~) is known for 
fixed values of the parameters /3 and CT and some 
of these will be plotted and discussed in 
Section 7. 

3. SOLUTIONS TO THE VELOCITY EQUATION 

3.1. The range -0*198838 .< /3 < 2.0 
Solutions to equation (13) with boundary 

conditions (14), to a considerably higher 
accuracy than those given in Paper 2 and 
applied in Paper 3a, were quoted recently by 
Bertram and Feller [S] from work done by 
Smith [9]. The present author has consulted 
only Ref. 8. This gave a table of values of the 
wall gradient.fg and the sum (5: + Si) at fixed 
values of ,5 in the range -0.198838 < /? .< 2.0. 
The boundary-layer thicknesses ST and Sz are 
defined in tern-s of the similar distance co- 
ordinate 9 as: 

and 
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The values taken from Ref. 8 are given in the 
first three columns of Table I. Other functions 
of the velocity boundary layer which are impor- 
tant in the present series of papers have been 
calculated from these and are also given in 
Table 1. The formulae used for evaluating these 
were : 

8.; _~ f;’ i ~ p(q 4. g, (29) 

(30) 

H,, -,f; 8; (31) 

(32) 

(33) 

The importance of these functions and their 
application to the calculation of boundary-layer 
thicknesses for non-similar flows have been 
discussed in Paper 1, Spalding [l]. From 
equation (31) it is clear that the quantity ft 
could have been written as l/S*, where Sl is the 
shear boundary-layer thickness in similar co- 
ordinates, but this notation is not used here. 

The quantity F, in equation (33) measures the 
rate of growth with distance x of the momentum 
thickness a,, and the quantity (S?$v) (duo/dx) is 
the corresponding measure of the pressure 
gradient in the main-stream. It was also shown 
in Paper 1 that F2 is very close to being a linear 
function of (S?Jv) (duo/dx). 

Any pair of exact solutions could be chosen 
so as to obtain the constants in such a linear 
approximation but it is convenient to choose the 
points at which F2 and (Si/v) (duc/dx) become 
zero respectively. If this is done with the present 
exact solutions the following relationship results : 

F, = 0.44105 - 5.1604 fj 2; - E, (34) 

of decelerated flows in greater detail. This may 
be useful when applying these values since the 
inaccuracy of the approximate methods dis- 
cussed in Paper 1 is greatest in this region. 

For ,B _ 2 most of the original values in 
columns 2 and 3 of Table 1 aie given to six 
significant digits. In calculating the other 
functions from these it has been assumed that 
the last digit given is exact. This generally 
resulted in an accuracy of five significant digits, 
although in some cases the last digit is in doubt 
by up to 5 units. Where doubt existed about 
particular values, the accuracy retained is at 
least as high ;:s the original figures allowed. 

Table 1 also contains the solution for the case 
/3 cc, namely equation (15) with boundary 
conditions (16). This is one of the few boundary- 
layer equations whose solution can be obtained 
in closed form. Only the gradient of 5 with 
respect to [ is required here and this is (see 
Pai [6]): 

di 
& 

== 3 tanh* $2 + tanh-l (35) 

From this the gradient at the interface is : 

(36) 

and the displacement thickness in terms of the 
similar distance co-ordinate E is : 

d[ = (3\//2 - 2\/3). (37) 

The momentum boundary-layer thickness may 
then be evaluated from the relationship: 

which is deduced from equation (15) by forma1 

where the first two terms on the right represent integration. 

the linear approximation and the function E, is a The function Hla is then the ratio of (37) to 

small correction factor which compensates for (38), M,, is the product of (36) and (38) and the 

the fact that F2 is not exactly a linear function other functions in Table 1 are evaluated from: 

of (a;/~) (duo/dx). Values of E, are also included 8; dUG 
in Table 1. ~- = (g;)2 

1, dx (39) 
Apart from being more accurate than the 

values given earlier in Papers 1 and 2 the F2 = 2(S;)” (40) 

figures contained in Table 1 cover the region and E, is calculated from equation (34). 



Because different similar co-ordinates have 
been used for the case @ = co, functions such as 
the wall gradient and boundary-layer thicknesses 
in Table 1 do not form a continuous set with 
those for other values of /3. It should be noted 
that the wall gradient, which is in fact 

fd21\ 
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Most of the values of the wall gradient @h/B) 
to be given later in Table 3 were calc~ated on a 
computer. The method has already been 
described in Paper 6. 

has been written in the same column asft. The 
functions tabulated in the last five columns do 
form a continuous set with the other values, 
however, since they are independent of the 
similar co-ordinates used. 

The (I, t) co-ordinates could, of course, have 
been used throughout but this would have made 
the formulation of the problem unfamiliar to 
the reader. It would also have meant treating the 
case of zero main-stream pressure gradient 
(when b = 0 and IE is infinite) as an exception. 

The values of the functions for fi = co in 
Table 1 are exact in the last digit. 

--I 
t -1 df2 F=O’ 

4.2. A~~rn~~~~~~ e~~a~~~o~~~~~ high v 
For very high values of u the b-boundary 

layer is very thin and only Iow values of 7 
contribute signi~cantly to the integral in equation 
(25) or, in other words, only the first term on the 
right-hand side of equation (41) is impo~ant. 
Under these circumstances the step-size used for 
integrating on the computer, namely A? -= O-1, 
was too large to give high accuracy. For these 
conditions, therefore, the asymptotic formulae 
given in Paper 3a were used. 

Because very accurate sohrtions to the velocity 
equation are now available these formulae have 
been recalculated. The method by which the 
asymptotic expansions were obtained is given 
below in a little more detail than in the earlier 
paper since this may be useful to someone 
wishing to make use of the asymptotic expan- 
srons. 

The methods used for evaluating the integral 
on the right-hand side of equation (25) have 
already been described in Papers 3a and 6. In 
the latter paper it was shown that by dividing 
the range of integration into two parts, namely 
O<n<dandd < 17 < co, equation (25) may 
be written : 

where the sign preceding the error function is 
opposite to that of f(d); since f(d) is generally 
positive this is usually negative. 

Equation (41) can give high accuracy but only 
holds when the distance d is large enough. This 
is so when, at the point q = a, the shear stress 
is virtually zero (i.e. f” is negligibly small) and 
the stream function f has the value: 

the integral to be evaluated becomes: 

E = j,” e-%y-2/3 exp - (A,gF + A6tp6f3 

+ A&p + . . ..)drp. (45) 

Since the values of D and fz are known the 
value of (bij.3) may be obtained, if values of E 
are calculated, by using the reIationsb.ip: 

(46) 

The coefficients A, occurring in equation (45) 
(42) are given by the general formula: 

The stream function f is first expanded in 
terms of derivatives at the interface giving: 

,_J‘6’e .f’b’T” +fpl” 
---jj-+F -&I-- +f$i- ..*(43) 

where the suffix 0 denotes the value at the inter- 
face andf, has been taken to be zero. Inse~ng 
equation (43) into equation (25) and changing 
the inte~ation variable from n to cp where : 
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As was noted in Paper 3a, the coethcients A,, 
AI, and A4 are zero and A, is unity. 

The integral E may 110~ be expressed as a 
series in inverse powers of 0 in the followmg 
way. 

Expanding the second exponential functron 
occurring in the integrand of equation (45) as a 
power series in y, each term under the integral 
sign is of the form e-q ~;“~i~~ where RZ has a 
different value for each term. Using the relation- 
ship : 

J 
m e-q pm/3 dg, = r (48) 
0 

where I’denotes the gamma function, the expres- 
sion for E may be evaluated term by term. On 
collecting terms in the same powers of u the 
series for E takes the form: 

Using the numerical values I’(&) = 2.6789385, 
J%) = 1.3541179, J’(I) = 1 and the abbrevia- 
tion : 

B 
D-pJiii (50) 

the first nine coefficients up in equation (49) 
become : 

ax = 0*41009927D (:51) 

a2 = 0*20637046D2 (52) 

cl3 = 0.~~69576~~ 
-+- O-059531965 (I - 2t3) (53) 

ct& = 0*12182734D4 
+ 0~013Ol9024 (I - Sis>D (54) 

u5 = 0*11608339Dj 
-+ 0.0058962987 (1 - 12&Y2 (55) 

a6 = 0*121339OOD” 
+ 0.0018374063 (1 - 47fi)D5 
- 0.0066146629 (1 - ,8 -- 28%) (56) 

Q, = 0.13651859D’ 
- 0.~19337671(1 -j- 58/3)D& 
- 0.43396747 x 1O-3 (9 - 1615 

- 44f33D (57) 

a, :-= O-16324225DH 
-- OGJ66333360 (1 + 23/3)Dj 
--- 0.15315062 x IO-” (296 7698 - 

- 2246/32)o” 
a9 = 0.20558658D” 

-- 0.013482111 (1 -j- 16#I)D6 
.- 0.2651380 x 1O-6 (21,893 

- 77,432/3 230, 158p2)D3 - 
/- 0.31180229 x IO-* (23 + 8713 

- 2198” 94j33). - 

158) 

159) 

~umericai values for these nine coefficients 
for the values of j3 occurring in Table 1 for which 
expansion (49) can be used are given in Table 2. 
To a large extent this table supersedes TabIe 2 
of Paper 3a, except that values of /3 greater than 
2 are not covered in the present table because 
accurate values of f i were not available. 
Where differences exist between values given in 
Paper 3a and the present ones, the latter are to 
be preferred. 

4.3. The ~e~~~atio~~ point for high 0 
The above series expansions cannot be used 

for the separation point when @ = -0*198838 
and J‘t z= 0 because the transformation given 
in equation (44) is invalid. The method for 
obtaining a series expansion for this case was 
given fully in Paper 3a and little new can be 
added here except that the coefficients in the 
series have been recalculated. The formulae for 
this case are given under Table 2 where f z' has 
the value 0.198838. 

5. TABLE OF VALUES OF(b;jB) 

5.1. I~is~~.~‘~~~~i of Tnbte 3 
The above methods have been used to 

evaluate the wall gradient (b&/B) for the values 
of B included in Table 1 and covering a wide 
range in the parameter o. The resulting values 
are given in Table 3. The quantities f i and Sy 
used in obtaining (hi/B) are given at the head 
of the relevant column. 

in each column a broken horizontal line 
separates values calculated by the computer 
from those obtained using the asymptotic 
formula. This means that at that value of a, 
which is different for each j3, the two methods 
agreed in the sixth signifi~nt digit. It does not 
mean, however, that the asymptotic series 
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cannot be used for lower values of u. Indeed, as 
was demonstrated in Paper 3a, when ,+3 is in the 
range -0.1 :< ,6 < 2 as well as for the separation 
point itself, the series are very useful even when 
u is near unity, although the accuracy is lower 
than for high C. 

The error in the values of (bA/B) given in 
Table 3 is believed to be confined to the sixth 
significant digit. It is possible for the computing 
programme to give an error of 5 units in this 
place but where it was possible to check the 
values they were found to be correct to within 
two units in the sixth place. In principle, how- 
ever, this last place should only be regarded as 
an estimate of the correct value. 

The results for high values of U, approximately 
0 > 10, for the two columns ,B = -0.19 and 
/3 = -0.18, could contain a greater error than 
elsewhere because the asymptotic formulae 
are not very reliable in this region. This may be 
seen on inspecting the coefficients in Table 2, 
where no asymptotic formula occurs for 
fl = -0.195. 

5.2. Calculating other functions from (bJB) 
Many other functions associated with the 

b-boundary layer may be calculated from values 
of (hi/B) for known values of the parameters 
p and cr. The formulae for doing this are given 
below, only those applicable to the casefo = 0 
being included; detailed discussion of these 
formulae was given in Paper 3. 

(60) 

~___. = -__ (61) 

(62) 

44” duo -__ 
v dx=& (63) 

UG a: 20 - t?l -- __ = 
v dx -@DV 

(64) 

A; duo ,6 b;, 2 -_-_=- 0 - 
v dx a2 B (65) 

uG 2 
- 2 &=-F- 

dda 20 - 8 0 3 
B ’ v (66) 

The quantities A’, Y, Wand Zconsidered in earlier 
papers, which are used in approximate methods 
of calculating functions in the b-boundary layer 
when u is high, are not discussed in the present 
paper and are therefore omitted from the above 
list. 

When considering the velocity equation in 
Section 3 above, it was convenient to use 
boundary-layer thicknesses, written with an 
asterisk, which were defined in terms of the 
similar co-ordinate q. In the same way thick- 
nesses associated with the b-boundary layer 
mav be defined as: 

and 

(68) 

where A, and A, are the conduction and convec- 
tion boundary-layer thicknesses defined in the 
notation list in terms of the physical distance y. 
The present author has found that working in 
terms of A: and Ai sometimes simplifies formulae 
and shortens calculations connected with similar 
boundary layers. 

It may be realized why (bJB) is called the 
“wall gradient” since, on examining equation 
(67), it is seen to be the reciprocal of A:. 

6. CALCULATING @;/II) FOR VALUES OF 0 OUT- 

SIDE THE RANGE COVERED IN TABLE 3 

6.1. High values 
For most values of /3, Table 3 gives good con- 

tinuous coverage of the Prandtl/Schmidt number 
up to u = 100 but there is a wide gap between 
this value and u = 1000. The procedure for 
obtaining values for u greater than 100 is straight- 
forward since only a few terms in the asymptotic 
series of Table 2 are required. For this reason 
very high values of u have not been included in 
Table 3. 

This does not hold, however, for the region 
approaching but not at the separation point 
when fl has the values -0.195, -0.19 and 
-0.18. For the first of these no useful asymptotic 
series could be found, for the second the series 
given in Table 2 is reasonably accurate only 
when u 3 1000 and for the third accuracy to four 
significant digits was possible when a = 100. 
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6.2. Low values 
When u < OXNJOl the wall gradient @b/B) may 

be obtained to good accuracy by taking the 
first term on the right-hand side of equation (41) 
to be equal to the distance d and evaluating the 
second term from suitable values of the functions 
f(a) and JO fd7 obtained from solutions to the 
velocity equation. These quantities and the 
formula to be used are given in Table 4. 

Table 4. Functions for evaluating (b,$B) when 
0 < O.oonl 

Formula: 

(i) = d + (E)“” (1 - erf (3”“f(d)) 

B 

-0.198838 5.4 3.04164 5.15335 
-0.195 5.4 3.28316 5.91030 
-0.19 5.4 3.39337 6.26970 
-0.18 4.8 2.92909 4.78499 
-0.16 4.8 3.09371 5.25598 
-0.14 4.8 3.20432 5.58319 
-0.10 4.8 3.35742 6.05042 
-0.05 4.2 2.88817 4,54870 

0.0 6.2 4.98322 12.7674 
0.05 42 3.05849 5.00374 
0.10 42 3.11984 5.17306 
0.2 4.2 3.21593 544433 
0.3 3.6 2.68948 3.86245 
0.4 3.6 2.74768 3.99968 
0.5 3.6 2.79567 4.11511 
0.6 3.6 2.83618 4.21423 
0.8 3.6 2.90141 4.37722 
1.0 3.6 2.95216 4.50708 
1.2 3.0 2.39341 2.99810 
1.6 3.0 2.45616 3.12827 
2.0 3.0 2.50273 3.22789 

d 

zzz!z 

f(d) 
-- 

J-if+ 

For u = OWOl this agrees with the values 
given in Table 3 by better than three units in the 
fifth significant digit. For smaller u the accuracy 
would be better. It should be noted that using 
the valuef(d) = (d - St), instead of the values 
of f(d) listed in Table 4, slightly improves the 
agreement with computed values at u = OWOl. 
D 

7. CURVES OF FUNCTIONS OF THE b-BOUNDARY 
LAYER 

7.1. General discussion 
Many functions relating to the b-boundary 

layer can be plotted from the results contained 
in Table 3. Some functions which are useful in 
the general methods of boundary-layer calcula- 
tion mentioned in Section 1.1 will be discussed 
in the present section. 

If 6 represents a boundary-layer thickness 
relating to the velocity boundary layer, it was 
seen in Papers 1 and 2 that in order to apply 
some of these general methods, it was necessary 
to know how the function (UG/V) (da2/dx) varied 
with (Sz/v) (duo/dx). The first of these is a 
measure of the rate of growth of 6 with distance 
x and the second is the corresponding measure 
of the main-stream pressure gradient. 

In plotting these relationships for the b-boun- 
dary layer when the parameter (T was small, it 
was found necessary to multiply the functions 
by u in order to bring closer together curves for a 
wide range of u. If A is the relevant boundary- 
layer thickness, this means that the functions 
are in fact (C&/R) (dA2/dx) and (A2/K) (duc/dx), 
where K is the thermal diffusivity for heat 
transfer or the diffusion coefficient for mass 
transfer. This form of the functions is not 
surprising when it is realized, on comparing 
equations (1) and (17) that K plays the same 
role in the b-boundary layer as does v in the 
velocity layer. 

The forms of these relationships are, of course, 
obtained from exact similar solutions to the 
boundary-layer equations. An important 
assumption underlying much of the present work 
is that these relationships, once established, are 
quite generally valid and can therefore be used 
to estimate boundary-layer thicknesses and 
transfer rates for any uniform property, laminar 
boundary layer. 

The relationships for large values of u were 
discussed in Paper 3a. The present results are 
more accurate than those given earlier but the 
difference is too small to be seen even when the 
figures are drawn to a large scale. The reader is 
therefore referred to Paper 3a for a more 
detailed discussion of the case of large a. The 
region of decelerated flow in the range 
-0.198838 < 6 < -0.1 was not adequately 
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covered in that earlier paper, however, and On this figure the straight line for a = 0 is 
figures for this will be discussed below. readily shown to be: 

7.2. The conduction thickness for low CT 
Figure 1 applies to the conduction thickness 

d, and covers the range in u from 0 to 1.0. 
Although curves are not included for all values 
of u contained in Table 3, interpolation for inter- 
mediate values is straightforward. 

uo dA; 4 _~___ 
Kdx = 

2A; dUG 
K dx (70) 

again a straight line of slope -2 but this time 
cutting the abscissa at 2/r and the ordinate at 
4/7r. The separation point for this line has the 
co-ordinates (-0*397676/r, 3.20464811~). 

When u is small the wall gradient @h/B) is 
almost proportional to al/Z, and for very small 
u it tends to the value (2~/7r)r’~. Inserting this 
last value into equations (63) and (64) and 
eliminating ,G between them gives for the line 
CJ = 0 in Fig. 1, the equation: 

The remarks made about Fig. 1 in the pre- 
ceding section apply also to Fig. 2 with obvious 
modification where necessary. 

7.4. Variation qf the ratio (0,/A,) with pressure 
gradient 

When considering the velocity boundary layer 
it was shown in Figs. 4(a) and (b) of Paper 2 how 
the ratio of boundary-layer thicknesses Hz4 
(=S,/S,) varied with the pressure gradient 
parameter (Si/v) (duc/dx). Figs. 3 and 4 of the 
present paper show the analogous relationship 
for the b-boundary layer; Fig. 3 covers the range 
of low u from 0 to 2.0 and Fig. 4 high values 
from 1 to infinity. In Fig. 3 the pressure gradient 
parameter plotted along the abscissa is 
@i/K) (duo/dx). 

uG dA; _ _71_23dUr, 
K dx K dx (69) 

a straight line of slope -2 cutting the abscissa 
at n/2 and the ordinate at r. The point marked 
as the separation point for this line is merely its 
intersection with the line for p = -0.198838; 
it has the co-ordinates (-0.0994195 n, 
0.801162 7r). 

The line given by equation (69) can be 
interpreted as that applicable to inviscid flow 
when Y is zero, as well as the limiting case when, 
although v is not small, K has a very large value. 
In either of these cases the velocity boundary 
layer has a negligible effect. The displacement of 
any other curve from this line is then a measure 
of the amount by which the velocity boundary 
layer affects transfer rates; this displacement is 
then greater and the curvature more pronounced 
in regions of decelerated flows where the velocity 
layer is thick. In spite of this curvature, which 
increased with increasing u, these curves would 
be considerably easier to apply than those for 
high u discussed in Paper 3a. 

As main-stream acceleration increases each 
curve approaches the line for u = 0 and the 
slope tends to the value -2 from below. Since 
the line for /I = co has exactly this slope it 
appears that no solution for this case occurs on 
this figure when plotted in this way. 

7.3. The convection thickness for low o 
The relationship for the convection thickness 

A, is shown in Fig. 2. 

On this figure “similar” solutions, namely 
those for a fixed value of p, may be shown by 
eliminating (bb/B) between equations (62) and 
(65) to be of the form : 

4 _ 1 A; due 

A, -/3 K dx (71) 

a straight line of slope l//3 passing through the 
origin. A few of these lines are shown in the 
figure. From equation (62) it may also be shown 
that AZ/A, has the value 2171 when u is zero what- 
ever the pressure gradient in the main-stream. 

The corresponding curves for high values of 
u are plotted in Fig. 4 where the functions used 
for Fig. 3 have been multiplied by u113 in order 
to bring curves for a wide range of u close 
together. This multiplying factor is effective for 
accelerated and slightly decelerated flows where 
the wall gradient (bb/B) is proportional to al’3 
for large u. For decelerated flows approaching 
separation conditions, however, it is not so 
useful because, since (bh/B) is then proportional 
to u1J4 for large U, the point for u = cc is at the 
origin. 
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7.5. Deceleratedflow and high o 
Frgures 5 and 6 give relationships for de- 

celerated flows and high values of a which could 
not be adequately treated in Paper 3a because 
accurate solutions to the velocity equation were 
not known. 

Figure 5, which refers to the conduction 
thickness A 4, has co-ordinates appropriate to the 
case when the wall gradient @l/B) is proportional 
to 0113. Because they are so close together curves 
for only a few values of a are given. That for 
a = 1000 has been stopped at p = -0.19 as 
no asymptotic formula could be found for 
B = -0.195. The slopes of the curves in this 

region must be close to that for the line /3 = 
-0.198838, that for a = co eventually having 
exactly that slope as it must meet this line at 
infinity. 

Figure 6 refers to the convection thickness 
A, and is an improved version of Fig. 2(b) of 
Paper 3a. In that earlier figure the curves were 
drawn so that separation points for the range of 
values of a were close together. In Fig 6 curves 
for slightly decelerated flows are close together 
but the separation points are far apart. Some of 
the curves have been omitted in the region 
between fi = 0 and /? = -0.1 where they are 
close together and intersect. 

-I A: d% 
raK dx 

Decelerated 
flows - 

FIG. 5. The same relationship as in Fig. 1 but for decelerated flows and high values of 0. The multi- 
plying factor ~-l/~ brings curves for a wide range of CJ close together. 
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-0.321 -0.02 -0Oi5 -0.005 

FIG. 6. The same relationship as in Fig. 5 but for the convection thickness A,. 

The present work forms part of the research programme 
of the Division of Food Preservation, C.S.I.R.O., 
Australia. The author is grateful to the statI of the Adolph 
Basser Computing Laboratory, University of Sydney, 
who computed most of the values contained in Table 3. 
He would also like to express his gratitude to Miss .I. D. 
Hayhurst, who calculated the other values and prepared 
the tables and figures. 
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of determining heat transfer, skin friction and 9. A. M. 0. SMITH, Improved Solution offhe caller md 
boundary layer thickness for hypersonic laminar Skun Bo~~ary Layer Equations. Rep. ES. 16009 (Con- 
boundary-layer flows in a pressure gradient. NASA tract No. NOa(s)9027), Douglas Aircraft Co. Inc., 
Memo. 5-24-59L (1959). Mar. 31 (1952). 

R&tnu&Cet article concerne l’etude des Ccoulements a uniformes & couche limite laminaire avec 
transport de masse Q la paroi. Dans ce cas, des solutions semblables de l’equation dynamique ont dojja 
&e don&es ; elles conduisent & une grande precision et couvrent un domaine d’ecoulements principaux 
d&&r& et moderement acct%S. Les solutions sont tout d’abord exprimees sous la forme adopted 
darts les premiers articles de cette sbie et sont ensuite utilisees pour l’evaluation du gradient a la 
paroi pour la couche limite-b (c’est-B-dire, nombre de Nusselt en coordonnees adimensionnelles). 
Les developpements en serie dormant ce gradient & Ia paroi. quand le nombre de Prandtl/Schmidt est 
grand, present& dans Particle 3(a), ont Cte recalcules pour en ameliorer la precision. Une table des 
valeurs du gradient .?t laparoi couvre le domaine des u compris entre 0,OOOl et 1000; en dehors de ce 
domaine, il peut Btre rapidement calcule. Quelques fonctions obtenues a partir de ce gradient B la 

paroi ont Ctb represent&es graphiquement et sont discutees. 

Zusanunenfassung-Es wird iiber laminare Grenzschichtstriimungen mit einheitlichen Stoffeigen- 
schaften berichtet, fur den Fall, dass kein Stofftransport durch die Grenzflachen auftritt. Ahnlich- 
kei~l~sungen grosser Genauigkeit sind dafiir in der Literatur fur den Bereich verzogerter bis schwach 
beschleunigter Hauptstr~m~gen angegeben. Die Losungen wurden erst in die Form gebracht, wie 
sie in friiheren Arbeiten dieser Reihe verwendet war, um dann damit den Wandgradienten fur die 
b-Grenzschicht (d.h. die Nusseltzahl in Ahnlichkeitskoordinaten) zu errechnen. Die Reihenentwick- 
hmgen ftir den Wandgradienten bei grosser Prandtl/Schmidtzahl O, die schon in der Arbeit 3(a) 
angegeben sind, wurden in der Genauigkeit gesteigert. Eine Tabelle fiir die Werte des Wandgradienten 
umfasst 0 von 0,0001 bis 1000, wobei fur beide Richtungen ausserhalb dieses Bereiches Berechnungen 
miiglich sind. Einige aus dem Wandgradienten erhaltene Funktionen werden aufgezeichnet und 

diskutiert. 

A~~~~-B KacTo~~e~ cTaTbe paccMaTp~aaeTc~ revenue ~aM~~apHora norp~~~~oro 
CnOR C nOCTOffHH~M~ ~~3~~eCK~M~iXapaKTep~CTKKaM~. B C?Iy=iae, KOfRa MaCCa He npOXOfiKT 
Yepea rpaHziuy paa]lena. B XKTepaType nnrt namioro cny9aa 6bmK HatQeHbI uOnO6Hbie 
pemenmr nnfr ypat3HeKKK n3KmeKas; 3TM pemeHKFt AaHbI c 6onbmoti TOYHOCTbIO nnR 
ycKopeKHbrx ri 3aKenneHKbrx 3HeumKx u0T0~03. CKasana pemeriyrft npmseneHbI~ TOM bKAe, 
B KaKOM OHK AaHbl B nepBblX CTaTbflX HaCTORmeti CepKK, a 3aTeM KCuOJIb30BaHbI nJIK 
BbmKc~eHan rpanKeHTa Ha CTeHKe Anfl b-norpaKKKKoro CnOR (T.e. HpKTepKi HyccenbTa B 
KOOpnKHaTaX nOnO6KSI). &rR yTOWeHKR 6b1n RpOK3BeneH IIepepaCYeT pa3aO?KeHKti3 PfrnC 
uenbro noxyseamr rpagKeKTa Ha cTeKKa upK 6onbmoK 3Ka9eKmr KpKTepKx fIpaanTnn- 
Rh&KnTa u,np~3e~eHHOM B CTaTbe 3(a). Ta6JZMua 3Ha=%eHIl& rpaJ(ueHTaKa CTeHKe BKJIEOYaeT 
3Ka~eK~~ QOT 0~0001 ~0 1000; aToT rpanwenr Ha CTeHKe KO%eT 6brrb .?erfco 3~q~c~eH n 3a 
npeAe~a~1~ aToro~~a~a3oKa,~aKbrrpa~~I~ec~~ ~npoaKa~~3~ipoBaH~KeKoTop~e ~YHK~~~, 

nonysemthle np~ onpe~ejrerrmm rpajuieKTa aa cTeHKe. 


